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vector parallel to the basal plane and T2 to the 
shear mode with displacement vector normal to 
the basal plane as shown in Fig. 1. Propagation 
along the hexad axis yields c33 and an internal 
check on Cu as shown in the following equations 

(11) 

and 

PVT2 = Cu (12) 

The last of the five independent elastic constants 
c13 can only be derived from the equations f~r 
propagation at some angle between the hexad aXIs 
and the basal plane. For propagation at 45° to the 
hexad axis one obtains for the Tl mode 

p(vTY = Hcll-c12+2cu) (13) 
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FIG. 1. Hexagonal ZnS symmetry element. 

and for the Land T2 modes 

pv2 = HCll +c33 +2cu )±! 
x {(Cll-C33)2+4(C13+CU?}l f2 (14) 

In this equation the positive second term applies 
to the L mode and the negative to the T2 mode. 

The equations for the curves of intersection of 
the velocity surfaces of the three acoustic modes 
with any plane containing the hexad axis can be 
obtained from equation (1) into which the com­
puted values of the cjj ha\'e been substituted. The 
appropriate equation is 

[H - !c( 1 - n2 )] 

x [H2 - {n2Jz + (1- 112)a}H + 1l2(I_n2) 

x(ah - d 2 )] =0 (15) 

where 11 is allowed to assume all values between 
+ 1 and -1. 

3. VELOCITY MEASUREMENTS 

A single crystal of hexagonal ZnS, grown in 
these Laboratories, was cut and polished to have 
pairs of parallel faces normal to the Xl and Xa 
axes and to a direction in the X 2X 3 plane at 45' 
to either of these axes as shown in Fig. 1. The 
directions of the displacement vectors are shown 
in this diagram for each propagation direction used 
in these measurements. The transducers used were 
10 mc/sec x- or y-cut quartz plates obtained from 
Valpey Crystal Corp. The pulse/cw technique 
used has been described elsewhere. (2) Table 1 

Table 1. Velocity measurements 

Propagation Displacement Velocity 
Mode direction direction x 10" cm secl 

(along axis)* (along a."is)* 

L X3 X3 5'868 
Tt X. Xl 2·645 
L Xl Xl 5·667 
Tl Xl X2 2'815 
T2 Xl X3 2·644 
L 45° to X3 43° to X3 5·469 
Tl 45° to X3 X 2 2 ·717 
T2 45° to X3 -47° to X3 3·224 

• See Fig. 1. 
t Shear modes degenerate. 

lists the eight independent velocity measur~men~5 
used for calculating the elastic constants given 10 

Table 2 and the curves of intersection of the velo-

Table 2. Elastic constants in units of 1012 dyn cm -2 

C13 

1·312 0·663 0·286 1·408 0·509 

=======================-

city surfaces with any plane containing the Z or 
X3 axis shown in Fig. 2. 

ELASTIC CONSTANTS OF o:-ZnS 

FIG. 2. Curves of intersection of velocity surfaces with 
any plane containing the Z axis. 

4. WAVE SURFACES and 
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The curves of intersection of the wave surfaces(3) 
with any plane containing the Z axis are loci of 
points R such that A ' _ C44 

1--
pVI 

(18) 

(V A ')2 
R 2 - ' - , 2A ' A '2 , - ( )2 + , V, - , 

cos£, 

or 

where 

and HI is as defined in equation (6). The para­
meters RI , £" At' and v, are as 'defined in Fig. 3. 

~ .:; JI'he angle t:,.. between the wave normal and the 
direction of energy flow is defined by 

(17) 

tan t:,..1 = (VI ~,A, ') tan £, (19) 

Figure 4 shows how the ray direction, or energy 
flow, deviates from the wave normal for each of 
the modes L, T1 and T2 as a function of e, which 
is the angle between the Z axis and the wave 
normal, in any plane containing the Z axis. 
Figure 5 shows a plot of (t:,.. + e) as a function of e 
for all three modes. The section of the T2 mode 
curve for 20° < e < 70° corresponds to the CllSp 


